19 research outputs found

    Artificial intelligence for imaging in immunotherapy

    Get PDF

    Radiomics: a critical step towards integrated healthcare

    No full text
    Abstract Medical imaging is a vital part of the clinical decision-making process, especially in an oncological setting. Radiology has experienced a great wave of change, and the advent of quantitative imaging has provided a unique opportunity to analyse patient images objectively. Leveraging radiomics and deep learning, there is increased potential for synergy between physicians and computer networks—via computer-aided diagnosis (CAD), computer-aided prediction of response (CARP), and computer-aided biological profiling (CABP). The ongoing digitalization of other specialties further opens the door for even greater multidisciplinary integration. We envision the development of an integrated system composed of an aggregation of sub-systems interoperating with the aim of achieving an overarching functionality (in this case‚ better CAD, CARP, and CABP). This will require close multidisciplinary cooperation among the clinicians, biomedical scientists, and (bio)engineers as well as an administrative framework where the departments will operate not in isolation but in successful harmony. Key Points • The advent of quantitative imaging provides a unique opportunity to analyse patient images objectively. • Radiomics and deep learning allow for a more detailed overview of the tumour (i.e., CAD, CARP, and CABP) from many different perspectives. • As it currently stands, different medical disciplines have developed different stratification methods, primarily based on their own field—often to the exclusion of other departments. • The digitalization of other specialties further opens the door for multidisciplinary integration. • The long-term vision for precision medicine should focus on the development of integration strategies, wherein data derived from the patients themselves (via multiple disciplines) can be used to guide clinical decisions

    Modern MR Imaging Technology in Rectal Cancer; There Is More Than Meets the Eye

    No full text
    MR imaging (MRI) is now part of the standard work up of patients with rectal cancer. Restaging MRI has been traditionally used to plan the surgical approach. Its role has recently increased and been adopted as a valuable tool to assist the clinical selection of clinical (near) complete responders for organ preserving treatment. Recently several studies have addressed new imaging biomarkers that combined with morphological provides a comprehensive picture of the tumor. Diffusion-weighted MRI (DWI) has entered the clinics and proven useful for response assessment after chemoradiotherapy. Other functional (quantitative) MRI technologies are on the horizon including artificial intelligence modeling. This narrative review provides an overview of recent advances in rectal cancer (re)staging by imaging with a specific focus on response prediction and evaluation of neoadjuvant treatment response. Furthermore, directions are given for future research

    Diagnostic Potential of Pulsed Arterial Spin Labeling in Alzheimer's Disease

    Get PDF
    Alzheimers disease (AD) is the most common cause of dementia. Although the underlying pathology is still not completely understood, several diagnostic methods are available. Frequently, the most accurate methods are also the most invasive. The present work investigates the diagnostic potential of Pulsed Arterial Spin Labeling (PASL) for AD: a non-invasive, MRI-based technique for the quantification of regional cerebral blood flow (rCBF). In particular, we propose a pilot computer aided diagnostic (CAD) procedure able to discriminate between healthy and diseased subjects, and at the same time, providing visual informative results. This method encompasses the creation of a healthy model, the computation of a voxel-wise likelihood function as comparison between the healthy model and the subject under examination, and the correction of the likelihood function via prior distributions. The discriminant analysis is carried out to maximize the accuracy of the classification. The algorithm has been trained on a dataset of 81 subjects and achieved a sensitivity of 0.750 and a specificity of 0.875. Moreover, in accordance with the current pathological knowledge, the parietal lobe, and limbic system are shown to be the main discriminant factors

    Radiogenomics: bridging imaging and genomics

    Full text link
    From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright

    Imaging of colorectal nodal disease

    No full text
    Imaging plays an important role in many aspects of nodal colorectal cancer from diagnosis, staging, and treatment selection to fundamental research on the mechanisms driving lesion development. The range of modalities includes anatomical imaging such as computed tomography (CT), magnetic resonance imaging (MRI), and functional imaging with the development of novel tracer and contrast agents for use in positron emission tomography, in addition to dynamic contrast-enhanced and diffusion-weighted MRI. Traditionally, CT has been used for the assessment of colon tumors and rectal tumors that have metastasized to lymph nodes and further to other distant organs such as the liver. MRI is a versatile technique that offers low-radiation insights for diagnosis and lesion characterization. The high resolution of microscopy using resected and biopsied tissue samples, while not accounting for the heterogeneity of the entire tumor burden, is important in the characterization of primary tumors in terms of pathway analyses and will become increasingly important for patient treatment stratification. The use of imaging in routine clinical care has resulted in large amounts of patient data that may be exploited by artificial intelligence to achieve new scientific insights, as well as to improve cost efficiency through automation

    Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy

    Get PDF
    Background: Immune checkpoint inhibitor efficacy in advanced cancer patients remains difficult to predict. Imaging is the only technique available that can non-invasively provide whole body information of a patient's response to treatment. We hypothesize that quantitative whole-body prognostic information can be extracted by leveraging artificial intelligence (AI) for treatment monitoring, superior and complementary to the current response evaluation methods. Methods: To test this, a cohort of 74 stage-IV urothelial cancer patients (37 in the discovery set, 37 in the independent test, 1087 CTs), who received anti-PD1 or anti-PDL1 were retrospectively collected. We designed an AI system [named prognostic AI-monitor (PAM)] able to identify morphological changes in chest and abdominal CT scans acquired during follow-up, and link them to survival. Results: Our findings showed significant performance of PAM in the independent test set to predict 1-year overall survival from the date of image acquisition, with an average area under the curve (AUC) of 0.73 (p < 0.001) for abdominal imaging, and 0.67 AUC (p < 0.001) for chest imaging. Subanalysis revealed higher accuracy of abdominal imaging around and in the first 6 months of treatment, reaching an AUC of 0.82 (p < 0.001). Similar accuracy was found by chest imaging, 5-11 months after start of treatment. Univariate comparison with current monitoring methods (laboratory results and radiological assessments) revealed higher or similar prognostic performance. In multivariate analysis, PAM remained significant against all other methods (p < 0.001), suggesting its complementary value in current clinical settings. Conclusions: Our study demonstrates that a comprehensive AI-based method such as PAM, can provide prognostic information in advanced urothelial cancer patients receiving immunotherapy, leveraging morphological changes not only in tumor lesions, but also tumor spread, and side-effects. Further investigations should focus beyond anatomical imaging. Prospective studies are warranted to test and validate our findings

    Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy

    Get PDF
    Background Checkpoint inhibitors provided sustained clinical benefit to metastatic lung cancer patients. Nonetheless, prognostic markers in metastatic settings are still under research. Imaging offers distinctive advantages, providing whole-body information non-invasively, while routinely available in most clinics. We hypothesized that more prognostic information can be extracted by employing artificial intelligence (AI) for treatment monitoring, superior to 2D tumor growth criteria. Methods A cohort of 152 stage-IV non-small-cell lung cancer patients (NSCLC) (73 discovery, 79 test, 903CTs), who received nivolumab were retrospectively collected. We trained a neural network to identify morphological changes on chest CT acquired during patients' follow-ups. A classifier was employed to link imaging features learned by the network with overall survival. Results Our results showed significant performance in the independent test set to predict 1-year overall survival from the date of image acquisition, with an average area under the curve (AUC) of 0.69 (p < 0.01), up to AUC 0.75 (p < 0.01) in the first 3 to 5 months of treatment, and 0.67 AUC (p = 0.01) for durable clinical benefit (6 months progression-free survival). We found the AI-derived survival score to be independent of clinical, radiological, PDL1, and histopathological factors. Visual analysis of AI-generated prognostic heatmaps revealed relative prognostic importance of morphological nodal changes in the mediastinum, supraclavicular, and hilar regions, lung and bone metastases, as well as pleural effusions, atelectasis, and consolidations. Conclusions Our results demonstrate that deep learning can quantify tumor- and non-tumor-related morphological changes important for prognostication on serial imaging. Further investigation should focus on the implementation of this technique beyond thoracic imaging

    Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aid

    No full text
    OBJECTIVES: In many countries, workers who developed asbestosis due to their occupation are eligible for government support. Based on the results of clinical examination, a team of pulmonologists determine the eligibility of patients to these programs. In this Dutch cohort study, we aim to demonstrate the potential role of an artificial intelligence (AI)-based system for automated, standardized, and cost-effective evaluation of applications for asbestosis patients. METHODS: A dataset of n = 523 suspected asbestosis cases/applications from across the Netherlands was retrospectively collected. Each case/application was reviewed, and based on the criteria, a panel of three pulmonologists would determine eligibility for government support. An AI system is proposed, which uses thoracic CT images as input, and predicts the assessment of the clinical panel. Alongside imaging, we evaluated the added value of lung function parameters. RESULTS: The proposed AI algorithm reached an AUC of 0.87 (p < 0.001) in the prediction of accepted versus rejected applications. Diffusion capacity (DLCO) also showed comparable predictive value (AUC = 0.85, p < 0.001), with little correlation between the two parameters (r-squared = 0.22, p < 0.001). The combination of the imaging AI score and DLCO achieved superior performance (AUC = 0.95, p < 0.001). Interobserver variability between pulmonologists on the panel was estimated at alpha = 0.65 (Krippendorff's alpha). CONCLUSION: We developed an AI system to support the clinical decision-making process for the application to the government support for asbestosis. A multicenter prospective validation study is currently ongoing to examine the added value and reliability of this system alongside the clinic panel. KEY POINTS: • Artificial intelligence can detect imaging patterns of asbestosis in CT scans in a cohort of patients applying for state aid. • Combining the AI prediction with the diffusing lung function parameter reaches the highest diagnostic performance. • Specific cases with fibrosis but no asbestosis were correctly classified, suggesting robustness of the AI system, which is currently under prospective validation

    Circulating Extracellular Vesicles: Their Role in Patients with Abdominal Aortic Aneurysm (AAA) Undergoing EndoVascular Aortic Repair (EVAR)

    No full text
    Abdominal aortic aneurysm (AAA) is a frequent aortic disease. If the diameter of the aorta is larger than 5 cm, an open surgical repair (OSR) or an endovascular aortic repair (EVAR) are recommended. To prevent possible complications (i.e., endoleaks), EVAR-treated patients need to be monitored for 5 years following the intervention, using computed tomography angiography (CTA). However, this radiological method involves high radiation exposure in terms of CTA/year. In such a context, the study of peripheral-blood-circulating extracellular vesicles (pbcEVs) has great potential to identify biomarkers for EVAR complications. We analyzed several phenotypes of pbcEVs using polychromatic flow cytometry in 22 patients with AAA eligible for EVAR. From each enrolled patient, peripheral blood samples were collected at AAA diagnosis, and after 1, 6, and 12 months following EVAR implantation, i.e. during the diagnostic follow-up protocol. Patients developing an endoleak displayed a significant decrease in activated-platelet-derived EVs between the baseline condition and 6 months after EVAR intervention. Furthermore, we also observed, that 1 month after EVAR implantation, patients developing an endoleak showed higher concentrations of activated-endothelial-derived EVs than patients who did not develop one, suggesting their great potential as a noninvasive and specific biomarker for early identification of EVAR complications
    corecore